Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy.

نویسندگان

  • Holger Schönherr
  • Joseph M Johnson
  • Peter Lenz
  • Curtis W Frank
  • Steven G Boxer
چکیده

The adsorption of phosphatidylcholine (PC) vesicles (30, 50, and 100 nm nominal diameters) and of dye-labeled PC vesicles (labeled with 6% Texas Red fluorophore (TR) and encapsulated carboxy fluorescein (CF)) to glass surfaces was studied by contact mode atomic force microscopy in aqueous buffer. These studies were performed in part to unravel details of the previously observed isolated rupture of dye-labeled PC vesicles on glass (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), specifically to differentiate partial rupture, that is, pore formation and leakage of entrapped dye, from full rupture to form bilayer disks. In addition, the adhesion potential of PC vesicles on glass was calculated based upon the adhesion-driven flattening of adsorbed vesicles and a newly developed theoretical model. The vesicles were found to flatten considerably upon adsorption to glass (width-to-height ratio of approximately 5), which leads to an estimate for the adhesion potential and for the critical rupture radius of 1.5 x 10(-4) J/m2 and 250 nm, respectively. Independent of vesicle size and loading with dye molecules, the adsorption of intact vesicles was observed at all concentrations below a threshold concentration, above which the formation of smooth lipid bilayers occurred. In conjunction with previous work (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), these data show that 6% TR 20 mM CF vesicles adsorb to the surface intact but undergo partial rupture in which they exchange content with the external buffer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels.

We present simple soft lithographic methods for patterning supported lipid bilayer (SLB) membranes onto a surface and inside microfluidic channels. Micropatterns of polyethylene glycol (PEG)-based polymers were fabricated on glass substrates by microcontact printing or capillary moulding. The patterned PEG surfaces have shown 97 +/- 0.5% reduction in lipid adsorption onto two dimensional surfac...

متن کامل

Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion.

The adsorption of large unilamellar vesicles composed of various combinations of phosphatidylcholine, phosphatidylethanolamine (PE), monomethyl PE, and dimethyl PE (PE-Me2) onto a glass surface was studied using fluorescence microscopy. The average lipid geometry within the vesicles, described mathematically by the average intrinsic curvature, C(0,ave), was methodically altered by changing the ...

متن کامل

Atomic force microscopy of nanometric liposome adsorption and nanoscopic membrane domain formation.

Scanning probe microscopy studies of membrane fusion and nanoscopic structures were performed using hydrated single lipids and lipid mixtures. Extruded vesicles of DMPC and mixtures at various concentrations of DLPC, DPPC and cholesterol were deposited on freshly cleaved mica and studied in a fluid environment by AFM. The nanostructures formed by these extruded liposomes ranged from isolated un...

متن کامل

Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy.

We have used magnetic alternating current mode atomic force microscopy (MAC-AFM) to investigate the formation of supported phospholipid bilayers (SPB) by the method of vesicle fusion. The systems studied were dioleoylphosphatidylcholine (DOPC) on mica and mica modified with 3-aminopropyl-triethoxy-silane (APTES), and DOPC vesicles with gramicidin incorporated on mica and APTES-modified mica. Th...

متن کامل

Conditions for liposome adsorption and bilayer formation on BSA passivated solid supports.

Planar solid supported lipid membranes that include an intervening bovine serum albumen (BSA) cushion can greatly reduce undesirable interactions between reconstituted membrane proteins and the underlying substrate. These hetero-self-assemblies reduce frictional coupling by shielding reconstituted membrane proteins from the strong surface charge of the underlying substrate, thereby preventing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 20 26  شماره 

صفحات  -

تاریخ انتشار 2004